- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chenxi Wang (1)
-
Chenxi Wang, Haoran Ma (1)
-
Christian Navasca (1)
-
Guoqing Harry Xu (1)
-
Haoran Ma (1)
-
Jonathan Eyolfson (1)
-
Khanh Nguyen, Texas A&M (1)
-
Kim, Miryung (1)
-
Liu, Shi (1)
-
Lu, Qingda (1)
-
Ma, Haoran Ma (1)
-
Michael D. Bond, Ohio State (1)
-
Ni, Yuanjiang (1)
-
Qiao, Yifan (1)
-
Ravi Netravali, Miryung Kim (1)
-
Shan Lu (1)
-
Shi Liu (1)
-
Wu, Jiesheng (1)
-
Xu, Harry (1)
-
Yifan Qiao (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chenxi Wang; Haoran Ma; Shi Liu; Yifan Qiao; Jonathan Eyolfson; Christian Navasca; Shan Lu; Guoqing Harry Xu (, USENIX Symposium on Operating Systems Design and Implementation)Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern datacenters, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by “lining up” memory accesses from the application and the GC so that they follow similar memory access paths, thereby (1)reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely-used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely-deployed cloud systems shows MemLiner improves applications’ end-to-end performance by up to 2.5x.more » « less
-
Chenxi Wang, Haoran Ma; Zhenyuan Ruan, MIT; Khanh Nguyen, Texas A&M; Michael D. Bond, Ohio State; Ravi Netravali, Miryung Kim (, 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020)null (Ed.)Resource-disaggregated architectures have risen in popularity for large datacenters. However, prior disaggregation systems are designed for native applications; in addition, all of them require applications to possess excellent locality to be efficiently executed. In contrast, programs written in managed languages are subject to periodic garbage collection (GC), which is a typical graph workload with poor locality. Although most datacenter applications are written in managed languages, current systems are far from delivering acceptable performance for these applications. This paper presents Semeru, a distributed JVM that can dramatically improve the performance of managed cloud applications in a memory-disaggregated environment. Its design possesses three major innovations: (1) a universal Java heap, which provides a unified abstraction of virtual memory across CPU and memory servers and allows any legacy program to run without modifications; (2) a distributed GC, which offloads object tracing to memory servers so that tracing is performed closer to data; and (3) a swap system in the OS kernel that works with the runtime to swap page data efficiently. An evaluation of Semeru on a set of widely-deployed systems shows very promising results.more » « less
An official website of the United States government

Full Text Available